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Abstract—The location information of road and lane lines is the
supremely important thing for the automatic drive and auxiliary
drive. The detection accuracy of these two elements dramatically
affects the reliability and practicality of the whole system. In real
applications, the traffic scene can be very complicated, which
makes it particularly challenging to get the precise location
of road and lane lines. Commonly used deep-learning-based
object detection models perform pretty well on the lane line
and road detection tasks, but they still encounter false detection
and missing detection frequently. Besides, existing Convolution
Neural Network (CNN) structures only pay attention to the
information flow between layers, while it can not fully utilize the
spatial information inside the layers. To address those problems,
we propose an attention-based spatial segmentation network for
traffic scene understanding. We use the convolutional attention
module to improve the network’s understanding capacity of
spatial location distribution. Spatial Convolution Neural Network
(SCNN) gets through the information flow within one single con-
volutional layer and improves the spatial relationship modeling
ability of the network. Experimental results demonstrate that
this method effectively improves the neural network’s application
ability of the spatial information, thereby improving the effect
of traffic scene understanding. Furthermore, a pixel-level road
segmentation dataset named NWPU Road Dataset is built to help
improve the process of traffic scene understanding.

Index Terms—Traffic scenes understanding, Spatial Convolu-
tion Neural Networks, Attention Model, Road Detection, Lane
Lines Detection.

I. INTRODUCTION

TRAFFIC accident brings enormous damage to life and
property. The development of social science and technol-

ogy has brought the possibility of using an auxiliary method
to avoid accidents. Autopilot and assisted driving are two
common ways to help avoid accidents. The development of
these technologies is inseparable from traffic scene under-
standing assignments, which includes computer vision tasks
such as lane detection [1], [2], road detection [3], or road
marking detection [4]. All those three tasks can be helpful for
navigation of vehicles in autopilot and assisted driving systems
[5], [6].

However, in real applications, considering the complexity
of traffic scenarios, these tasks can become challenging. As
shown in Fig. 1, changing weather, dazzle lighting conditions,
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Fig. 1. This figure shows several examples of traffic scenes under different
external conditions. The first row shows three simple scenes, while it is more
involved in the second and third.

and complex road scenes cause significant challenges for
understanding the scene, especially in lane and road detection
task. The challenges can be summarized as follows:

• Lots of factors could reduce the visibility of lane lines and
roads, such as complicated weather, disappointing light
conditions, occlusion of pedestrians or vehicles, and the
wear of lane lines.

• Without regard to visibility, lane lines have structural
features of elongation and continuity, but it will be trun-
cated into something with entirely different characteristics
when occlusion occurs.

• Even in the same scene, for a particular lane line, the
characteristics it exhibits at the near end, and the far
end are quite different. In this case, proximal and distal
targets appear on imparity scales, so it is not easy to use a
straightforward detection model to detect the whole lane
line.

It is hard to overcome these challenges with simple image
processing or traditional machine learning methods. In recent
years, deep features extracted by deep neural networks show
strong representational ability in image classification, object
detection, and other tasks in the computer vision field. It
performs much better than traditional handcrafted feature-
based machine learning methods among lots of tasks.

Although lane lines are artificially designed with specific
shapes, it is still hard to design effective patterns to match all
complex scenes. To get rid of those influence factors, some re-
searchers use convolutional neural networks (CNNs) to extract
high order semantic information, and then use those features to
detect lane lines directly. However, CNN’s operation principle
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Fig. 2. The schematic diagram of the proposed attention-based spatial segmentation network. Firstly, given an input traffic scene image, the initial convolution
layer generates low level convolutional features. Then the features pass through dilated ResLayers with CBAM attention modules. The ASPP structure uses
different dilatation coefficients to fuse multi-scale features and extends the horizon of the model. Then, a spatial convolutional network is presented at the
top of the decoder to parse the spatial information of the features. Finally, multiple decoders are utilized to complete the segmentation target of the road and
lane line.

and the down-sampling layers in it lead to the loss of spatial
information when extracting features. For lane lines that are
easily occluded and have large scale changes, spatial location
information becomes vital. Therefore, it is necessary to make
some changes to the existing network structure to improve
the network’s perception of spatial information and further
increase the accuracy of lane detection.

Owing to the above reasons, our framework focuses on
how to extract features with sufficient spatial information to
improve lane line detection and road detection performance.

A. Overview of Our Approach

In this paper, we propose Attention Based Spatial Segmen-
tation Network for Traffic Scene Understanding (ABSSNet)
to conduct traffic scene understanding from the perspective of
image semantic segmentation and make better use of spatial
information. As shown in Fig. 2, DeepLabV3+ is used as the
backbone, while lane line and road detection, spatial attention
mechanism is leveraged in the convolutional layer and the final
output layer, which effectively improves the detection accuracy
of networks.

1) Encoder with convolution attention modules : For the
input traffic scene images, the encoder aims to extract pow-
erful features. In this stage, a dilated ResNet is used as
the backbone, and the initial convolution module remains
unchanged, while convolutional attention mechanisms are in-
serted into different positions of Res-Blocks. The attention
structure assigns different weights to different spatial locations

of features, which forces the model to have different concerns
in different places. Thus the attention-based convolutional
encoder can learn more rich features to describe the spatial
location information of lane lines and roads.

2) Multi-task decoder with Spatial Convolutional Neural
Network : The decoder is used to construct the mapping
between the feature vectors encoded by the encoder and the
desired segmentation results. The spatial convolution neural
network is added to the top level of the decoder to analyze
and model the spatial structure information inside the input
feature vectors. The information flow in four directions within
the feature vector effectively improves the analysis and un-
derstanding ability of the decoder. Besides, the decoder of
DeepLabV3+ is upgraded to a multi-task version. The two sub-
decoding modules share one SCNN spatial modeling process
and then perform up-sampling and convolutional decoding
independently. One branch focuses on the lane line decoding,
and the other focuses on road decoding. The results of road
segmentation and lane segmentation will be output indepen-
dently.

B. Contributions

Different from previous methods, ABSSNet implements
lane line detection and road detection through segmentation. A
robust semantic segmentation network provides the possibility
of more sophisticated detection in complex traffic scenes. Rich
high dimensional features can be extracted due to the excellent
representation ability of Deep Convolutional Neural Networks
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(DCNN). Here, the lane line detector and road detector share
one specific DCNN encoder. By removing excess interference
class from the target list, the segmentation accuracy of the
interested class can be improved effectively. Therefore, the
detection stage consists of two single-target detectors, which
depend on different decoders. In summary, the encoder en-
codes the input image into convolutional features, and the
two decoders decode the same feature to get different output
results.

To further enhance the image spatial information extraction
ability of the entire model, the convolution attention mech-
anism is included in the existing encoder structure. Through
employ the attention mechanism, different parts of the feature
obtain different weights, so that the network can better focus
on the part we care about, instead of treating the entire image
feature equally. Also, we introduce the spatial convolutional
layer at the top of the decoder. This layer drives information
flow inside the extracted features in different directions. The
modeling and extraction ability of the encoder and decoder is
improved by combining these two structures.

A road segmentation dataset containing 3,949 images (ex-
tracted from 11 traffic scenes videos) with accurate pixel-level
labels is collected and finally released by this paper. This
dataset contains a verify of fluent or congested traffic scenes.
Both urban and highway roads, simple or complex scenes are
accommodated inside the dataset. This high-resolution road
segmentation dataset will improve the current road segmenta-
tion method.

The following parts of this paper are organized as follows:
Section II focuses on review related works. The NWPU Road
Dataset will be introduced in SectionIV. Detailed implemen-
tation of the framework is given in Section III. Section V
evaluates the performance of the proposed method. Finally,
we conclude the proposed method and present future works
in Section VI.

II. RELATED WORKS

This section focuses on introducing some work related to the
proposed method. This paper covers several technology fields,
including lane line detection, road detection, semantic segmen-
tation, attention mechanism, and spatial information modeling
methods. Some related works from different perspectives are
introduced here.

A. Lane line detection and road detection methods.

Many traditional machine learning and image processing
methods do lane detection base on handcrafted low-level
features [7], [8]. These methods are quite useful in simple
traffic scenes, while in complex and changeable conditions,
their effectiveness decreases significantly. Huval et al. [9]
make the first attempt to use the neural networks to tackle
lane detection problems. However, they did not have relatively
large datasets for network training, so the final result is not
satisfactory. Tao et al. [10] also try to use the deep learning
method in lane line detection and discuss the importance of
spatial information in the convolutional neural network. As
for road detection He et al. [11] firstly estimate the boundaries

based on the intensity image, then road areas are subsequently
detected base on the full-color image. Kong et al. [12] propose
a method attempts to estimate the vanishing point associate
with the central part of the road followed by the segmentation
of the corresponding road area upon the detected vanishing
point.

PASCAL VOC dataset [13] proposed by Everingham et al.
publish a publicly available dataset of images and annotations,
together with standardized evaluation software. Fritsch et
al. [14] release a novel open-access dataset and benchmark
for road area and ego-lane detection, which contains 600
annotated training and test images of high variability from the
KITTI autonomous driving project. Yu et al. [15] build a new
driving dataset comprised of over 100K videos with diverse
annotations including image-level tagging, object bounding
boxes, drivable areas, lane markings, and full-frame instance
segmentation. The emergence of all these large datasets pro-
vides a solid foundation for data-driven machine learning
methods, thereby promoting the development and progress of
a large number of deep learning methods.

B. Image semantic segmentation.

Image segmentation is an old but meaningful computer
vision problem. There are many related studies even before
1985. Haralick, Robert M, and Shapiro, Linda G [16] summa-
rize major classes of image segmentation techniques and give
several algorithms corresponding to each class. Shi and Malik
[17] propose the normalized cuts aim to extract the global im-
pression of an image and realize the image segmentation task.
Image segmentation methods using mathematical morphology
based on watershed transform and homotopy modification
are presented by Meyer et al. [18]. Grady [19] performs
multi-label, interactive image segmentation by random walks.
Those methods mentioned above are relatively efficient image
segmentation algorithms when they are first presented. How-
ever, it is much worse than the current deep learning-based
segmentation method.

Since the Fully Convolution Network (FCN) [20], more
and more researchers have been inspired to apply a neural
network to image segmentation tasks. Noh et al. [21] propose
the deconvolution network composed of deconvolution and
unpooling layers used for image semantic segmentation. Then
SegNet [22] introduces the encoder/decoder structure into the
segmentation framework. Meanwhile, U-Net [23] tries to do
segmentation in the case of small data set size, and Kai et
al. [24] combine shape information and convolution features
to train the classifier and speed up the segmentation. Wang et
al. [25] propose a joint method of priori convolutional neural
networks at the super-pixel level and soft restricted context
transfer. DeepLab [26]–[29] series effectively improves the
segmentation accuracy step by step. So far, image segmenta-
tion methods based on deep learning have made great progress.

Due to the nature of the image segmentation task, the
training process of neural network models requires a large
amount of pixel-level annotated data. That is, each pixel in
the image needs to be manually labeled with its corresponding
category. Labeling such data is extremely time-consuming
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for high-quality images. In order to reduce the cost of data,
researchers make efforts from different angles. Richter et
al. [30] and Ros et al. [31] construct the synthetic scene
image semantic segmentation datasets using different software
respectively. Since it is a computer-generated virtual picture,
the category corresponding to each pixel in the figure can
be directly generated by the computer, which saves a lot of
labeling work. Besides synthetic datasets, Wang et al. [32] and
Li et al. [33]–[35] propose weakly supervised and few-shot
methods to reduce data dependence of models.

C. Attention mechanism.

Demitry et al. [36] propose the attention concepts for the
first time, and the experimental results show that the employ
of the attention mechanism is quite effective in improving
the neural network’s understanding of spatial information.
Although attention mechanism is initially devoted to machine
translation for processing text sequences [36], [37], just like
other feature embedding methods [38], [39], currently it is
extended to various fields including image Q&A [40], speech
recognition [41], image captioning [42], and image classifica-
tion [43], [44] et al.

III. ATTENTION BASED SPATIAL SEGMENTATION
NETWORK

As shown in Fig. 2, ABSSNet is built above DeepLab V3+
[29] and consists of two key improvements: convolutional
attention block inside the encoder backbone and spatial CNN
among multi-task decoder. In this section, we firstly have
a quick description of the DeepLab V3+ baseline and then
introduce the above two improvements in detail separately.

A. Baseline:DeepLab V3+

Since DeepLab V1 [26], four versions of DeepLab [27]–
[29] have been proposed. Different adaptation of DeepLab has
quite distinct architecture. Here we are only going to cover
the fourth version (more detailed information can be found
through the references). DeepLab V3+ is composed of an
encoder-decoder structure. The encoder contains atrous convo-
lutional feature extractor and Atrous Spatial Pyramid Pooling
(ASPP) operations. Once the complete image is inputted, the
atrous convolution extracts CNN features, and ASPP tries
to integrate the deep features through different scales. Then
the encoder outputs the encoded representation of the input
image and a low-level feature separated from the primary
layers. Thus, the decoder is carried out with features extracted
by the encoder. Simple bilinear upsampling and convolution
are used to make the pixel-wise classification. At the same
time, the feature is recovered to the original image size. The
entire DeepLab V3+ framework can be end-to-end trained with
cross-entropy loss. For clear representation, we use ADCNN,
ASPP, Flevel represent atrous Deep Convolutional Neural
Network, Atrous Spatial Pyramid Pooling, and different levels
of features. The whole segmentation structure can be described
as:

Fll,FADCNN = ADCNN(img), (1)

MaxPool

AvgPool

MLP

MaxPoolAvgPool

iF

iaF icF

Fig. 3. The process diagrams of channel attention and spatial attention
operation in series. Cuboids represent various feature vectors. The blue cuboid
comes from MaxPooling, and the red one comes from AveragePooling. The
different shapes result from operations in different directions.

FASPP = ASPP (FADCNN ), (2)

ScoreMap = Decoder(Fll,FASPP ), (3)

where img is the input image, Fll means low-level features
separated from ADCNN’s primary layer, and FADCNN repre-
sents the output of ADCNN, FASPP is the feature extracted
by ASPP. The output of the whole framework is called the
score map, which is a single channel figure of the same size
as the input image, and each pixel contains the value of the
category it belongs to. Eq. (1) and Eq. (2) together form the
encoder. Here we mainly make improvements to the structure
distributed in Eq. (1) and Eq. (3).

B. Multi-layer Attention Convolution

Unlike general object detection, lane and road detection
need to resolve the information contained in near and far
scenarios. Thus spatial clue becomes extremely important.
Although the atrous convolution in the original framework has
been an exploration for the utilization of spatial information,
we still try to use other methods to further improve the under-
standing ability of the neural network for spatial information.
The attention mechanism makes neurons in different locations
have various responses to the input. Usually, the attention
mechanism is a two-dimensional or even one-dimensional
operation. To apply it inside convolutional neural networks, the
three-dimensional attention mechanism CBAM [44] appears.
It means to apply attention to both spatial and channel degrees.
Simultaneously, considering its ease of use in other network
structures, it is designed as a plug-in light-weighted module
with the same input and output shape.

As shown in Fig. 3, CBAM has two kinds of modes, that is
channel attention and spatial attention. Two modes can be used
alone or together according to the application requirements.
Here we use two CBAM modes in series, which means for an
input feature Fi, it will first pass through channel attention
structure and get Fic. Then the spatial attention CBAM
will continue to focus on spatial information and generate
Fia, which represents attention-based processed features. The
detailed working process can be expressed by the following
formulas:
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Fig. 4. Four kinds of SCNNs in different directions. The input features can
be divided into many slices with different indications.

Fic = Fi ⊗ (σ(MLP (AP (Fi)) +MLP (MP (Fi))), (4)

Fia = Fic ⊗ (σ(f7×7([AP (Fic);MP (Fic)]))), (5)

where Fic means intermediate channel attention features
inside each CBAM block, ⊗ denotes element-wise multiplica-
tion, σ is the sigmoid function, f7×7 represents a convolution
operation with kernel size 7× 7 and MLP, AP, MP represent
multi-layer perceptron, average pooling, max pooling opera-
tion respectively.

Due to the shape keep characteristic (input and output have
the same shape) of CBAM, it can be inserted into anywhere
of the networks easily. Different quantities and positions led
to various combinations with distinct modeling abilities. The
detailed analysis and experiments will be shown in Section V.

C. Spatial Convolution Neural Networks

Since lane and road detection requires precise prediction
of specific curves. It is quite natural and effective to use
semantic segmentation models to generate probability maps of
input images, and then separate lane lines and roads from the
probability maps. In order to obtain accurate probability maps,
spatial relationship analysis becomes noteworthy. The tradi-
tional convolutional neural network only transmits information
between layers. Thus there is no flow of massage inside the
convolutional layer. Those methods always modeling spatial
relationships based on Markov Random Fields (MRF) or
Conditional Random Fields [45] (CRF), which means simply
connect an MRF or CRF on top of a DCNN. Such methods
work, but not sufficient enough. SCNN proposed by Pan et al.
[46] generalizes traditional deep layer-to-layer convolutions to
slice-by-slice convolutions within feature maps, thus enabling
message passing between pixels across rows and columns
in a layer. This internal flow of information helps a lot in
modeling spatial relationships, finally contributes to lane and
road detection.

As shown in Fig. 4, there are four kinds of SCNN opera-
tions, the suffix ‘D,’ ‘U,’ ‘R,’ ‘L,’ who donate SCNN towards
down, up, right, left direction respectively. The detailed im-
plementation of information flow inside the feature vector is
introduced below. Firstly, select the flow direction (here we
use SCNN U as an example). Then, slice the input feature
vector along the selected direction, a small convolution is
applied to the bottom wafer, and convolution results will be
added to the upper one. After that, the same convolution

is applied to the second slice then add to the third slice.
Repeat this operation until it reaches the top one. Finally,
information flows from the bottom to the top, which means all
slices contain information from all previous slices. As for the
other three kinds of SCNNs, it is just operating in different
directions. We apply SCNN D,U,L,R sequentially to the
encoder’s output FASPP and get the refined features, which
is specially designed for the spatial relationship information
and improves the performance of traffic scene understanding.

D. Attention Based Spatial Segmentation Network

Considering the spatial modeling ability of CBAM and
SCNN, this approach tries to combine two flexible structures
with a powerful semantic segmentation network to achieve
traffic scene understanding. Firstly, the atrous deep convolu-
tional neural network integrates with CBAMs is used to extract
convolutional features from the original input images. Then
the atrous spatial pyramid pooling is used to reconstruct new
features with different scaling levels. After passing through
the encoder, the encoded features are sent to SCNNs with four
different directions for the sake of internal information flow
within the high-dimensional feature tensors. When the internal
information flow finishes, two separate multi-task decodes
share the same feature vector and decode different score maps
for roads and lane lines.

As shown in Fig. 2, according to experimental results, the
final full model chooses to use four CBAMs right after four
ResLayers and integrate four directions of SCNNs to the
decoder. This combination achieves relatively good results.

IV. A ROAD SEGMENTATION DATASET: NWPU ROAD
DATASET

Besides, we build a simple single task dataset that aims
to improve road segmentation methods. This dataset contains
11 videos, and each video lasts 3 minutes with a frame rate
of 30 fps. All videos are shot by one specific automobile
data recorder with a size of 1280x720 and a resolution of
96 dpi. The dataset includes a variety of real driving scenes.
It is impossible and also meaningless to label all frames in
the videos. So we divide the videos into discontinued image
sequences. Through sampling images every 15 frames, each
video can be split into 359 images, which means extract the
video frames each half-second.

Totally 11×359 = 3, 949 images are generated from the 11
videos. All images are labeled using a web-based annotation
tool LabelMe [47]. Multiple points are drawn manually and
then joined together to form polygons encircle the labeled road
area. Some examples of the final label results are shown in Fig.
5.

V. EXPERIMENTS

We validate the effectiveness of the proposed ABSSNet for
road and lane detection by comparing with the bottleneck or
partial improvement version and other popular traffic scene
understanding methods on related datasets.

Section V-A introduces the datasets and our modification on
it. Section V-B shows the experiment’s implementation details.
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Fig. 5. This figure shows different traffic scene samples from the released
dataset and their corresponding visualized road masks. The dataset contains
a variety of driving scenes. The first row demonstrates a relative emptiness
situation, while the third row shows congestion scenes.

Then the results and ablations studies are given in Section V-C.
Section V-D try to discover the internal working principle of
CBAM and SCNN.

A. Datasets and Protocols

BDD100K [15] is a newly constructed large-scale driving
dataset. It contains over 100K videos with various annotations,
including lane markings, road areas, object bounding boxes,
and full-frame instance segmentation et al..

Since here we mainly focus on lane lines and road detection,
some trade-offs have been made to the BDD100K dataset.
Considering the actual functionality of the road area and
following the labeling method of BDD100K, the road area (so-
called drivable area) is divided into two different categories:
“directly drivable area” and “alternatively drivable area”. The
former one means the area that the driver is currently driving
on, and the latter one is a lane the driver is currently not driven
on but could do so through changing lanes.

The original BDD100K’s lane markings are annotated by
polygon areas and classified into eight main categories with
different attributes of continuity and direction. In order to fit
semantic segmentation networks, we reconstruct lane marking
annotation data using our tools and following the new rules.
The new data has pixel-level annotation, and the corresponding
label convert rules are shown in Tab. I.

Finally, we get a modified version of BDD100K called
BDD100K M. All our train and test process are based on this
variant. The dataset contains 70000 training images, 10000
validation images, and 20000 test images.

B. Implementation Details

We use ResNet152 [48] as the encoder’s backbone network
with dilate rate [1, 1, 1, 2] for four Res-Layers. The whole
network can be end-to-end trained with Adam optimizer and
cross-entropy loss function. Part of the parameters is initialized

TABLE I
LABEL CONVERT RULES. FROM ORIGINAL BDD100K TO BDD100K M

Original Labels New Labels
double white - parallel - solid white - solid
single white - parallel - solid white - solid
double white - parallel - dashed white - dashed
single white - parallel - dashed white - dashed
double yellow - parallel - solid yellow - solid
single yellow - parallel - solid yellow - solid
double yellow - parallel - dashed yellow - dashed
single yellow - parallel - dashed yellow - dashed
all others background

by the ImageNet [49] pre-trained model. The optimizer is
created with an initial learning rate 0.0001, weight decay of
0.005, and we manually adjust the learning rate every epoch
according to the following formula:

LR = LR× (1− 1× epoch

MAX EPOCH
)× 0.9, (6)

where epoch is the serial number of the current one, and
MAX EPOCH means the upper limit of the epochs, which
we set to 100 here. All training process are implemented
with three NVIDIA 1080Ti GPU, Intel(R) Core(TM) i7-6800K
CPU @ 3.4GHz and input batch size 32. All code is developed
by python language, based on the Pytorch [50] framework.

In the encoder part, each attention module consists of a
channel CBAM and a spatial CBAM in series. An attention
module is placed between every two Res-Layers. For the
decoder, the spatial convolutional neural network is placed
behind the encoder, which is the top layer of the decoder.
SCNNs in four different directions are used serially. Two sim-
ple convolutional multi-task decoders share the same spatial
feature vector and focus on segment road and lane lines while
restoring image resolution at the same time.

C. Evaluation Results and Ablations Studies

We firstly train the original DeepLab V3+ as the base-
line on the modified BDD100K datasets (Of course, simple
adjustments are made, such as modifying the number of
prediction categories and using one encoder with two decoders
to achieve the effect of multi-task segmentation). Then we
combine baseline with CBAM and SCNN separately, test and
analyze how these two parts bring improvements to the whole
model. Finally, evaluate the proposed Attention Based Spatial
Segmentation Network. As for the measure of model effect,
just like the common segmentation measurements, according
to the evaluation criterion of Pascal VOC [13], detection
accuracy is measured by Intersection over Union(IoU) and
Mean Intersection over Union(mIoU) defined by formula 7
and 8:

IoU =
pij∑k

j=0 pij +
∑k

j=0 pij − pii
, (7)

mIoU =
1

k + 1

k∑
i=0

IoU, (8)

where k is the number of significative labels (Usually, a zero
label means a useless or unlabeled point). and pij represent
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TABLE II
DETAIL CLASS IOU OF THE TEST RESULTS, COMPARE DIFFERENT STEPWISE MODELS (THE BASELINE DEEPLABV3+, BASELINE WITH CBAM, BASELINE

WITH SCNN AND FULL MODEL) ON MODIFIED BDD100K DATASET’S VAL SET AND NWPU ROAD (IN %).

Method Road Now Road Drivable Lane Line ws Lane Line wd Lane Line ys Lane Line yd NWPU Road
DeepLabV3+ 80.21 64.72 43.78 46.53 50.92 23.17 81.14
DeepLabV3+ & CBAM 81.98 69.00 44.75 48.11 53.22 25.81 83.57
DeepLabV3+ & SCNN 81.44 66.78 44.27 45.81 52.07 25.78 82.39
Full Model 82.73 70.13 45.99 48.78 55.80 28.10 85.36

TABLE III
COMPARISON OF DIFFERENT STEPWISE MODELS (THE BASELINE

DEEPLABV3+, BASELINE WITH CBAM, BASELINE WITH SCNN AND
FULL MODEL) ON MODIFIED BDD100K DATASET’S VAL SET (IN %).

Method Road mIoU Lane Lines mIoU
DeepLabV3+ 79.80 52.51
DeepLabV3+ & CBAM 81.04 54.02
DeepLabV3+ & SCNN 81.12 53.24
Full Model 82.71 55.38

for one point p, its real label is i, and the predicted result is
j. If i equals j, that means for this specific point, the model
gets the right prediction results. Otherwise, it gives the wrong
predictions. This means we can also express IoU by equation
9:

IoU =
TP

FN + FP + TP
, (9)

where TP means the number of points which we get right
predictions, FN and FP contain all points with different
predicted results and labels.

As shown in Tab. III, by contrast, only using baseline
DeepLabV3+ alone has the worst effect. The addition of two
different modules improves the overall effect of the model,
while the combination of the two parts brings comprehensive
improvement, and the final complete model brings the most
noticeable improvement. The experimental results show the
same trend in both lane line detection and road detection. The
proposed method brings mIoU from 52.51% to 55.38% for
lane line detection task and improves road detection accuracy
by 2.91% (from 79.80% to 82.71%). Tab. II shows detail test
class IoU scores. The full model outperforms all other models
in all road and lane classes. The visualized test results for
different models are shown in Fig 7. The leverage of spatial
modeling ability effectively improves the detection result.

In principle, CBAM is quite different from SCNN, and there
are many different ways to combine them with baseline. We
explore the difference between various combinations through
experiments, and analyze the causes of such results.

1) The Effects of CBAM: From the very beginning, CBAM
is designed as a plug-in module with the same input and
output shapes. Its relatively simple structure allowed it to have
very few parameters and can be easily plugged into most
of the existing network structure when needed. In our case,
DeepLabV3+ mainly consists of Encoder, ASPP, and Decoder.
These three parts contain lots of convolution layers. Most of
these convolutional layers are theoretically integratable with
CBAM modules. Obviously, we cannot append CBAM to all

Fig. 6. The comparison of different insert methods and different insert
quantity of CBAMs. It can be seen that different settings will have a significant
impact on the convergence speed at the early stage, and the final convergence
results are slightly different from limited training cycles. In general, the
increase in the number of CBAM will improve the final result but reduce
the convergence speed. Furthermore, the fifth group showed relatively good
performance both in convergence rate and detection accuracy. So the final
insert methods of the proposed methods use the fifth setting.

convolutional layers (even CBAM only have a small number
of parameters, its abuse still increases the computing burden
of the network). Therefore, we design to add an appropriate
amount of CBAM modules in different places, and finally
determine the insertion mode we use through experimental
analysis of the actual effects.

ResNet 152 mainly consists of four Res Layers, and each
Res Layer contains lots of Res Blocks. We try to add CBAM
modules to the bottom of all the blocks in each Res Layer
from the beginning. That is, the first group adds a CBAM mod-
ule after all the Res Blocks in Res Layer1. The second group
adds the CBAM module after all the Res Block in Res Layer1
and Res Layer2, and so on. Finally, one more group that only
inserts CBAM modules between each Res Layers is added
into the experiment plan. A total of five groups are trained,
and then the effect of different combinations is tested and
compared. The test result is shown in Fig. 6.

According to the experiment results, in terms of the overall
trend, the effect of the model is getting better as the number of
CBAM increases. However, after exceeding a certain number,
the improvement becomes weaker. Moreover, due to the rapid
increase in the number of Res Block modules, which leads
to the explosive growth of the number of CBAM modules,
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TABLE IV
THE INFLUENCE OF SCNN’S DIRECTION (MIOU IN %).

Method Road mIoU Lane Lines mIoU
SCNN U 80.67 52.87
SCNN D 80.93 53.22
SCNN L 80.15 53.17
SCNN R 80.28 52.68
SCNN UDLR 82.71 55.38

a large amount of computation is introduced in the case of
limited model improvement. In a restricted number of tests,
we can see that the introduction of too many CBAM modules
brings limited improvement, which also increases the training
difficulty of the network to some extent and slows down its
convergence speed. So after careful consideration, we finally
choose the last set of solutions. That is, the CBAM module is
inserted into the bottom of each Res Layer. In this way, only
four CBAM modules are used, which can effectively improve
the performance of the model without introducing too much
computation.

2) The Effects of Spatial CNN : SCNN makes a significant
contribution to the information flow inside the feature tensors
extracted by the neural networks. Since the tensors are high-
dimensional information carriers, its internal information flow
will have directional characteristics, and the information flow
along different directions will undoubtedly lead to different
results. As shown in Fig. 4, there are four different directions.
To verify the effect of different directions, we firstly use
four SCNNs with different directions alone, then integrate
all four choices. Finally, analyze the actual effect of different
combinations through experimental results.

According to Tab. IV, four kinds of SCNN that only use a
single direction do not bring significant improvement to the
network, while the method of four directions combined brings
relative improvements to the model. Considering its relatively
small amount of parameters, we finally chose to improve the
framework in a way that uses all directions.

As for the insert position of SCNN, since they also have the
same input and output size, the optional insert positions are
similar to CBAM. Combine different positions and amounts
can make an infinite number of structure groups. The exper-
iments developed by Pan et al. [46] conclusively prove that
SCNN can achieve a better effect as long as it is inserted at
the top of the original network structure. Therefore, we will
not repeat that work here and choose to directly place SCNN
at the top, which is the position immediately after ASPP as
shown in Fig. 2.

3) The Effects of Atrous Convolution: The central variable
part of the dilation rates lies in the Res-Layers of the encoder.
In the original DeepLabV3+ framework, the dilation rates of
four Res-Layers have been set to [1, 1, 1, 2] and [1, 1, 2,
4] separately. Of course, the structure of the neural network
then needs to be slightly adjusted and changed with the
shape of the features. Here we set experiments with different
dilatation rates and analyze the detailed influence of the atrous
convolution.

Three sets of different experiments are set up. The only

TABLE V
THE INFLUENCE OF ATROUS CONVOLUTION (MIOU IN %).

Method Road mIoU Lane Lines mIoU
Without dilation 79.21 52.65
Dilation Group 1 79.54 52.41
Dilation Group 2 80.58 53.14

TABLE VI
THE INFLUENCE OF MULTI-TASK DECODER (MIOU IN %).

Decoder Type Road mIoU Lane Lines mIoU
Single Road 80.37 -
Single Lane - 52.86
Multi Task 80.58 53.14

difference between the different groups is that the expansion
coefficients used in the atrous convolution, and all other
settings are consistent. All training processes use the same
hardware equipment as before, but due to the time limit,
the number of epochs is reduced, and we only train 25
complete epochs in each group. The first group uses ResNet
without dilation as the backbone. The second and third groups
use ResNet with dilation rates of four Res-Layers set to
[1, 1, 1, 2] and [1, 1, 2, 4] separately. The results of the
comparison experiment are given by Tab. V. A large dilation
rate brings improvement to the detection accuracy. Thus, the
dilation group 2 is used for the encoder backbone base on the
experiment result.

4) The Effects of Multi-Task Decoder: To verify the influ-
ence of the multi-task decoder. We design experiments use the
full model with dual-task decoder or single road/lane decoder
for comparison. The max training epoch is also set to 25 like
in Section V-C3.

Tab. VI shows the impact of multi-task decoder on the final
results. We can see that different decoder branches promote
each other, which can slightly speed up the model’s learning
process. The biggest change brought by the dual-task decoder
is that multiple results can be obtained by only one encoding
process.

D. Discussion

According to the experimental results, the CBAM and
SCNN modules bring improvements to the understanding
ability of the spatial information. However, how exactly do
they work, and why can they make such a difference based
on what we already have? Here We design different analysis
methods for these two structures and try to explore the in-
depth principles.

1) Analysis of CBAM modules: The original purpose of the
CBAM module is to make the input feature vector’s different
positions have different weights to achieve the effect of the at-
tention mechanism. This section extracts CBAM modules from
the well-trained frameworks with different training progress
and visualizes the effect of the attention.

To verify the effect of training on CBAM, we select different
training stages to verify and visualize its impact. Here we
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Fig. 7. Exemplar results on modified BDD100K traffic scenes understanding datasets. We show four comparative results here, namely baseline, baseline with
SCNN, baseline with CBAM, and full model (baseline with SCNN and CBAM).
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Fig. 8. Visualizations of the attention effects of CBAM at different training stages(random initialization, 10 epochs, 30 epochs, 50 epochs).
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Fig. 9. Schematic diagram of the CBAM visualization process. The feature
change weight coefficients after dimensionality reduction can easily overlay
on the original input image and show attention distribution intuitively.

chose random initialization, train 10 epochs, 30 epochs, and
50 epochs for comparison. For a trained model under a
specific training phase, a randomly chosen traffic scene is used
as the input. Base on this particular input, the model first
obtains a high-dimensional convolution feature Fo through
the convolutional network, and then after the feature passes
the attention module, it becomes a new convolution feature
Fa. We use Fa to do a point-by-point division of Fo and
calculate the weight value Fweight that attention gives to each
point.

Fig. 9 shows the visualization process of attention effect.
The feature change weight coefficient obtained by point-by-
point division is a 3-D high-dimensional tensor. This vector
faithfully records the numerical changes, but it is not intuitive
enough for the understanding of CBAM’s modeling ability of
spatial structure information. So, here we calculate the average
of Fweight through channel dimension, map it to the two-
dimensional space, and restore the size to the original input
image size by interpolation. Then the two-dimensional weight
change data is mapped to the range of 0 to 255, filtered by a
simple threshold, and superimposed on the original image to
show the attention effect brought by CBAM. Considering the
information loss caused by the interpolation during recovering
image size, the analysis of CBAM here only use the one
after the first Res-Layer because its corresponding convolution
feature has a relatively large spatial resolution.

Through the above visualization method and experiment
planning, the final comparison results are shown in Fig. 8.
It can be seen that the spatial weights brought by random
initialization are randomly and evenly distributed over the
entire image, which means that it has the same attention for
different positions of the entire input image. With the progress
of network training, the CBAM module gradually increases

TABLE VII
INFLUENCE OF OCCLUSIONS (MIOU IN %).

Usage of SCNN None Upper Middle Bottom
None (Road mIoU) 81.04 57.31 43.65 47.35
None (Lane mIoU) 54.02 33.64 26.82 25.94
DULR (Road mIoU) 82.71 66.72 54.57 58.32
DULR (Lane mIoU) 55.38 41.35 35.91 33.28

the weights for the regions of interest, and finally makes the
attention of the module focus on the lane line and the road
area. The upper and bottom parts of the input picture generally
do not include the road area and lane line area, so the weight of
these positions will gradually become smaller as the training
progresses.

2) Analysis of SCNN modules: In order to verify that
SCNN brings sufficient internal spatial information flow to
the network, the actual impact of SCNN is further explored
through experiments. For the input traffic scene images, we
use image processing tools to add different noise occlusions
at different locations and then test the performance of the
detection network in different occlusion situations with or
without SCNNs separately. We use the occlusion scheme
shown in Fig. 10, which is without occlusion and occluded
in the upper, middle, and lower parts. The occlusion material
is randomly generated low-density Gaussian noise.

NoiseNoise

Fig. 10. This figure shows the generation step of noise occlusion. The different
parts of the input image are covered with a slide of noise block. Then the test
results of processed images are compared to analysis the effect of SCNNs.

A few test images are separated from the dataset’s validation
set and covered with the different noise. The detailed test
results are shown in Tab. VII. According to the test results, no
matter where the occlusion occurs and which structure is used,
the noise makes the detection accuracy suffer a severe drop.
However, the detection network with SCNNs performs much
better than the one without it. This result proves that SCNNs
can set off internal information flow that helps improve the
robustness of the existing network structure.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an attention based spatial segmentation
network for traffic scene understanding. It integrates convo-
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lutional attention modules and spatial convolution operation
with an encoder-decoder semantic segmentation network. Ex-
perimental results show that the proposed method effectively
improves the traffic scene understanding ability, which means
lane and road detection accuracy. It has good robustness
to the influence of noise. Furthermore, a pixel-level road
segmentation dataset named NWPU Road Dataset is released.
It helps improve existing methods for road identification and
detection.

The spatial and attention modeling modules are proved to
be effective in the traffic scene understanding task, and it can
be extended into generalized semantic segmentation and other
pixel-level dense prediction tasks.
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